版本: V1.03

AFDX 仿真卡 用户使用手册

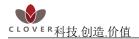
AFDX-CPCIe

成都科洛威尔科技有限公司

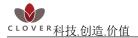
地址:成都市高新西区双柏路68号23栋 TEL: 1878-0222-336 191-3621-6517

EMAIL: clovertech@163.com 公司官网: www.clvtech.net

声明


本手册中介绍的产品(包括硬件、软件和手册本身)的版权归成都科洛威尔科技有限公司所有,且保留所有权利。用户对产品的购买并不代表用户获得版权的许可,未经本公司授权,任何组织或个人不得以任何方式复制本手册的任何部分。

本手册所包含的内容如有更改, 恕不另行通知。


目录

声明	2
目录	3
图目录	4
表目录	4
版本说明	5
范围	6
1. 概述	7
1.1. 模块描述	7
1.2. 模块特点	7
1.3. 原理框图	8
1.4. 模块功能	9
1.5. 技术规格	11
1.6. 工作环境	11
1.7. 操作系统	11
2. 机械结构	11
3. 模块接口	12
4. 状态指示灯说明	13
5. 硬件连接及线缆	13
5.1. 接口连接	13
5.2. 推荐线缆	13
6. 使用说明	14
6.1. 板卡使用	14
7. 选型指南	15
附录 A-数据数据包格式	
附录 B-网络接口与通道关系	17
附录 C-VI 总线带宽限制	18

图目录

	图 1	1 仿真卡外观图	7
	图 2	2 原理框图	8
	图 3	3 结构尺寸图	12
	图 4	4 模块面板图	12
	图 5	5 硬件接口连接示意图	13
	图 6	6 AFDX 数据帧格式	16
	图 7	7 网络接口和通道	17
表	目氢	表	
	表 1	1 接收模式区别	9
	表 2	2 LED 状态指示灯定义表	13

版本说明

V1.0

初始版本。

V1.01

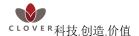

重新进行排版,修正手册中的错误。

V1.02

增加 EDE 功能的相关描述。

V1.03

增加独立通道模式功能; 增加千兆接口功能和相关描述; 新增扩展 BAG 设置功能。



范围

用户手册对 AFDX 仿真卡的功能、性能、参数指标进行说明,并 提外部接口定义、机械尺寸,用户可以通过本手册了解仿真卡使用的 基本条件和方法。

本文档适用与成都科洛威尔科技有限公司生产的 CPCIE 总线的 AFDX 仿真卡,即板卡型号为 AFDX-CPCIE-xx 模块。

除《用户手册》外,我们还提供《快速使用手册》、《API函数使 用手册》等相关文档,用户可以通过这些文档了解必要的使用或者开 发信息。

1. 概述

1.1. 模块描述

AFDX-CPCle 仿 真 卡 是 一 款 基 于 CPClE 总 线 接 口 的 AFDX/ARINC-664 Part7(Avionics Full Duplex Switched Ethernet 航空电子全双工交换以太网)的 ES 端系统测试和仿真模块。单个模块最多可提供 4 个以太网接口,最大可支持 2 个双冗余 ES 系统或者 4 个单网口 ES 系统。可用于 AFDX/ARINC-664 总线协议的仿真和测试。

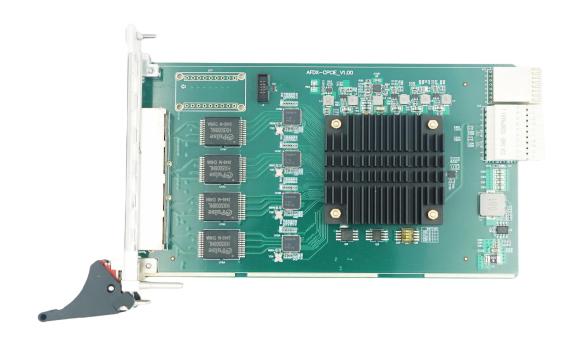


图 1 仿真卡外观图

1.2. 模块特点

- · 符合 AFDX/ARINC-664 Part7 规范
- 全硬件实现协议收发
- · 最多 4 个 1000M/100M/10M 以太网端口
- · 支持冗余和独立工作模式,最大支持2个双冗余通道或4个独立通道
- · 最大支持 2048 个接收 VL 和 2048 个发送 VL
- · 每个 VL 支持 4 个子 VL 端口
- · 支持取样端口(Sampling),队列端口(Queuing),服务访问端口

成都科洛威尔科技有限公司 www.clvtech.net技术支持: 19136216517 市场热线: 18780222336邮 箱: clovertech@163.com地 址: 四川省成都市高新西区双柏路 68 号

(SAP)

- · 支持 EDE (Boeing) 功能
- 支持 64bit 时间错
- · 可选外部 IRIG 时间源(选配)
- · 支持 VL 接收, VL 监控, 顺序监控三种接收模式
- · 支持硬完整性和冗余性检测
- · 冗余接收时能够设置可变的 skew 参数
- · 支持可编辑的 VL 过滤表
- · 支持容错接收
- · 支持 VL 消息刷新率监控
- · 支持消息解析和故障提示
- · 支持硬件自动 BAG (1~128ms) 发送
- · 支持多种 BAG 调度发送模式
- · 支持扩展自定义最小 BAG 时间(100us~1ms)
- · 冗余发送支持 A/B 网络 skew 模拟
- · 支持多 buffer 发送
- · 支持故障注入
- · 支持多种中断方式
- · 每通道最大 32MB 收发内存
- · 支持 DMA

1.3. 原理框图

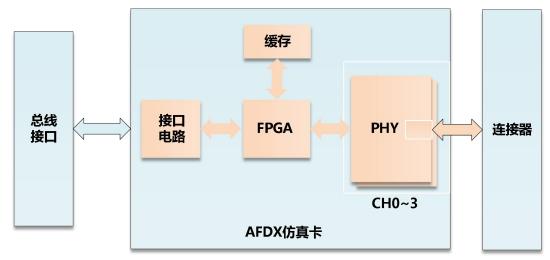


图 2 原理框图

1.4. 模块功能

1.4.1. 接收功能

AFDX 仿真模块为了便于总线仿真、测试,适应多种测试工况,提 供了三种不同的接收模式。分别为 VL 接收模式、VL 监控模式以及顺 序监控模式。

VL 接收模式 (VL-MODE): 按照预先创建的 VL 参数进行接收 (即 按照 VLID、端口地址进行接收)。该种模式下能够支持采样(sampling)、 队列(Queuing)、服务访问(SAP)三种不同的端口接收,队列端口 和服务端口能够创建多个 buffer 进行接收,接收的数据会根据端口存 放,用户可通过对应的 VL 参数进行数据访问。该模式适用于绝大多 数仿真和测试应用。

VL 监控模式(VL-Monitor-MODE):按照预先创建的 VL 参数进 行接收(仅根据 VLID 值),该模式下将符合 VLID 的数据进行顺序监 控和存储。该模式适合用于关心指定 VL 链路的数据, 而不关心具体 数据目标端口的情况。

顺序监控模式 (SEQ-Monitor-MODE): 无需创建 VL 参数, 监控 总线上所有 VL 的数据,接收到的数据按照接收的先后顺序进行存放。 该模式常作为总线监控功能时使用。

功能	VL 模式	VL 监控模式	顺序监控模式	
创建 VL 参数	E VL 参数		否	
创建子 VL 参数	是	否	否	
VL 过滤表编辑	否	否	是	
数据存放方式	按端口存放	按 VL 顺序存放	顺序存放	

表 1 接收模式区别

VL 接收模式和 VL 监控模式

- 可创建 2048 个 VL
- 每个 VL 支持 4 个子 VL 端口
- 支持采样端口(Sampling),队列端口(Oueuing),服务访问端口 (SAP)
- 接收模式: 冗余接收, 仅 NETA.仅 NETB, NETA 和 NETB
- 冗余接收时支持可调整的 SKEW 参数
- 根据目标 VLID 和端口地址接收数据

技术支持: 19136216517 市场热线: 18780222336 成都科洛威尔科技有限公司 www.clvtech.net 址: 四川省成都市高新西区双柏路 68 号

- · 多倍缓冲 BUFFER 接口
- · 支持 EDE (Boeing) 校验功能
- 错误检测
- 支持中断,每条 VL 可单独使能中断

顺序监控模式

- 可编辑的 VL 过滤表
- 接收模式: 仅 NETA, 仅 NETB, NETA 和 NETB
- 错误检测

1.4.2. 发送功能

- 可创建 2048 条 VL
- · 每个 VL 支持 4 个子 VL 端口
- · 可按 BAG 发送
- 支持扩展自定义最小 BAG 时间,范围 100us~1ms(最小 BAG 时间需要≥VL个数×0.1us)
- · 可编辑的调度列表
- 支持支持取样端口(Sampling),队列端口(Queuing),服务访问 端口(SAP)
- 循环子链路传输
- 多倍缓冲 BUFFER
- 数据发送策略
 - 循环发送模式
 - 仅发送新数据模式
- 数据发送网络:
 - 仅 NETA
 - 仅 NETB
 - NETA 和 NETB 同时发送
- 支持 EDE (Boeing) 功能
 - EDE 头产生方式可设置
 - 尾部校验方式可设置
 - 非 IP 分包时支持硬件 EDE 校验添加
- 错误插入
 - 每条 VL 均可插入错误
 - 错误插入类型: SN 序号错误, CRC 错误, 长度错误, MAC 源地址错误,IPChecksum 错误, CRC 错误,UDP 地址错

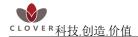
成都科洛威尔科技有限公司 www.clvtech.net 箱: clovertech@163.com 地 址:四川省成都市高新西区双柏路 68 号 误, IP 地址错误

- · 发送中断
 - 中断类型:单个数据包中断、半 buffer 中断,满 buffer 中断
 - 每条 VL 可单独使能中断

1.5. 技术规格

- · 总线:
 - AFDX-CPCIE-xx: PCIe2.0x1 总线
- · 重量: ≤200g
- · 尺寸: 160x100mm (±0.2mm, 不含面板)
- 功耗:
 - $\leq 4.5W (12V@0.375A, @25^{\circ}C);$
- · 板载缓存:
 - 256MB 缓存

1.6. 工作环境


- 工作温度
 - 0℃~+55℃ (商业级)
 - -40℃~+75℃ (工业级)
- · 存储温度: -50℃~+80℃
- · 湿度: 5%~95%(不凝露)

1.7. 操作系统

- · 支持 Windows7/windows10
- · 支持 Linux (可选)
- · 支持中标麒麟(可选)
- · 支持天脉操作系统(可选)
- · 支持 VxWorks (可选)

2. 机械结构

AFDX 模块为为标准 3U TYPE2 类型的 CPCle 模块,物理尺寸为: 160×100mm(不含面板)

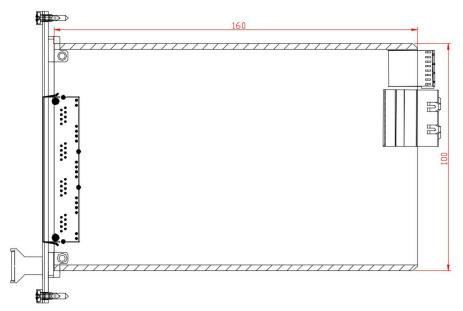


图 3 结构尺寸图

3. 模块接口

AFDX 仿真模块通过前面板的连接器提供外部信号接口。模块提供4个RJ45接口。分别对应CH0~CH3。

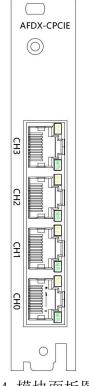


图 4 模块面板图

定义:

CH-0: 网络接口 0-NET0

CH-1: 网络接口 1-NET1

CH-2: 网络接口 2-NET2

CH-3: 网络接口 3-NET3

邮 箱: clovertech@163.com

地 址:四川省成都市高新西区双柏路 68 号

4. 状态指示灯说明

模块每个网络接口均提供一个绿色和一个黄色 LED 指示灯,指示灯定义见下表:

LED	LED 状态	定义
	熄灭	端口链接未建立
黄色	常亮	端口链接已建立
	闪烁	链接已建立且有数据收/发
绿色	熄灭	千兆链接未建立
	常亮	千兆链接已建立

表 2 LED 状态指示灯定义表

5. 硬件连接及线缆

5.1. 接口连接

AFDX 仿真卡的对外连接器为 RJ45 插座。当仿真卡工作在冗余模式时需要将冗余通道的 NETA(NETO/NET2)和 NETB(NET1/NET3)网络分别接入对应设备的 NETA 和 NETB 网络;当仿真卡工作在独立模式时将通道接入对应设备的 NETA 或 NETB 网络。硬件接口连接示意图如下。

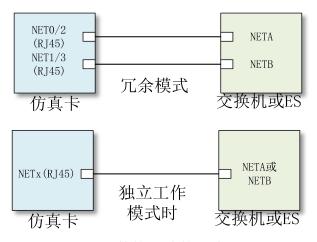


图 5 硬件接口连接示意图

5.2. 推荐线缆

推荐使用 CAT5 及以上规格双绞网线。

6. 使用说明

6.1. 板卡使用

您可以使用我们提供的控制台 demo 软件或者总线仿真软件实现 仿真卡的各功能,包括工作模式选择,VL 创建,消息发送,消息接 收等。在使用前需要安装硬件板卡、驱动和相应的软件,具体内容可 参见《快速使用手册》。

如果您需要使用 AFDX-CPCle/PXle 仿真卡进行二次开发,那么可以看参见《AFDX 仿真卡 API 函数使用手册》。

另外在使用板卡时,您可能需要对一些基本的AFDX(或ARINC-664)总线的知识进行了解。您可以通过《快速使用手册》中的相关章节进行了解,也可以阅读相关协议标准。

7. 选型指南

AFDX -CPCIE -2 T I -FIRIG

A B C D E F

Α	模块类型	固定为 AFDX
В	总线类型	PCI: PCI 总线模块
		CPCI: CPCI 总线模块
		PXI: PXI 总线模块
		PCIE: PCIe 总线模块
		CPCle: CPCle 总线模块
		PXIe: PXIe 总线模块
С	通道数	1~4: 1~4 个网络接口
D	速率	无: 100M/10M 速率
		T: 1000M/100M/10M 速率
E	温度等级	C: 商业级; I: 工业级
F	客户定制信息	无:标准版本
		-FIRIG: IRIG

附录 A-数据数据包格式

■ AFDX Frame —				-				
6 Bytes	6 Bytes	2 Bytes	20 Bytes	8 Bytes	1-1471 Bytes	0-16 Bytes	1 Byte	4 Bytes
Destination Address	Source Address	0x800 IPv4	IP Structure	UDP Structure	AFDX Payload	Padding	SN	Frame Check Sequence

图 6 AFDX 数据帧格式

附录 B-网络接口与通道关系

仿真卡中提及的通道即为 AFDX 中的 ES 端系统收发接口,即 ES 通道。

仿真卡最多支持 4 个以太网接口(分别为 NETO~3),支持冗余工作模式和独立工作模式。如果工作在冗余模式时,将由两个以太网接口组成一个冗余 ES 通道。如果工作在独立工作模式时,那么单个网口也可以成为一个 ES 通道(此时该通道将不具备冗余功能)。

仿真卡可最多组成 4 个独立 ES 通道、2 个冗余 ES 通道或者 1 个 冗余通道加 2 个独立通道的组合方式。网络接口和通道关系如下图所示。

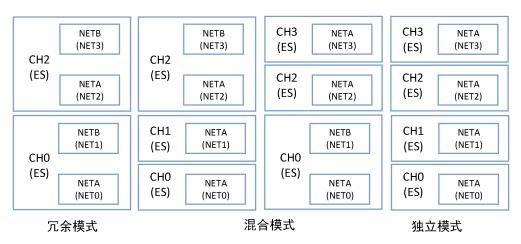


图 7 网络接口和通道

当工作在冗余模式时,由两个网络接口(NETA 和 NETB)组成一个冗余通道。如上图所示的冗余模式的 CHO,在该模式下网口 NETO/NET1 将组成通道 0,其中 NETO 作为 NETA, NET1 作为 NETB。 网络接口与通道号关系如下表所示。

通道模式与通道号关系			
网络接口	冗余模式	独立模式	
NET0	CH0-NETA	CH0	
NET1	CH0-NETB	CH1	
NET2	CH2-NETA	CH2	
NET3	CH2-NETB	CH3	

当工作在独立通道模式时,通道将不具备冗余功能,以及 NETA/B 网络相关的功能,默认按 NETA 网络进行收据收发。

 成都科洛威尔科技有限公司 www.clvtech.net
 技术支持: 19136216517 市场热线: 18780222336

 邮 箱: clovertech@163.com
 地 址: 四川省成都市高新西区双柏路 68 号

附录 C-VL 总线带宽限制

虽然仿真卡在 VL 模式下最多支持 2048 条接收和发送的 VL 创建, 但是这并不意味在任何条件下都能创建 2048 条 VL。

限制创建最大 VL 的条件有 2 个:

- 1) 创建的所有的 VL 的带宽不能超过当前网络的带宽的总和。带 宽计算方式可参见《API 软件参考手册》中的附录 B。
- 2) 用户创建的 VL 的数据带宽不能超过仿真卡随机读写缓存带宽 总和。下表列出了仅接收和仅发送时满足读写带宽的典型应用 范围。
- ◆ 仅发送时:

	可设置的最小 BAG 值
1通道	32
2 通道	32
3 通道	64
4 通道	64

测试条件: VL 数量=2048 条, Lmax=1518, 链接速度 1Gbps 时, 单个发送 buffer, sendcycle 模式,发送模式为调度模式 4,上位 机不实时更新数据。


	可设置的最大 VL 数量
1通道	64
2 通道	64
3 通道	32
4 通道	32

测试条件: BAG=1ms, Lmax=1518, 链接速度 1Gbps 时,单个发 送 buffer, sendcycle 模式,发送模式为调度模式 4,上位机不实 时更新数据。

仅接收时:

VL 模式下,读取不丢包允许创建的最大 VL 数量		
1通道	2048	
2 通道	2048	

成都科洛威尔科技有限公司 www.clvtech.net 技术支持: 19136216517 市场热线: 18780222336 址:四川省成都市高新西区双柏路 68 号

3 通道	1024
4 通道	1024

测试条件:数据长度 1518 字节,发送端 bag=128ms (带宽均衡 发送时),链接速度 1Gbps 时,8 个接收 buffer,仅读取数据不做数据处理。

计算机配置: win11 64bit, AMD Ryzen 7 8845H, 32G 内存。

注意:接收 VL 总是能最大创建 2048 条 VL,以上测试结果仅表示 多条 VL 同时读取时数据包不丢失的情况。

VL 模式	式下,读取不丢包允许创建的最大 VL 数量
1通道	64
2 通道	32
3 通道	16
4 通道	16

测试条件:数据长度 1518 字节,发送 bag=1ms (带宽均衡发送时),链接速度 1Gbps 时,128 个接收 buffer,仅读取数据不做数据处理。

计算机配置: win11 64bit, AMD Ryzen 7 8845H, 32G 内存。

注意:接收 VL 总是能最大创建 2048 条 VL,以上测试结果仅表示 多条 VL 同时读取时数据包不丢失的情况。

突发带宽风暴时,		医发带宽风暴时,	允许最大缓存帧数据
1	7 3里7呆		有海港 C 4 帖

总线突发带宽风暴是指总线上的数据包和数据包之间没有任何间隙,即所有数据帧全部背靠背的方式进入接收端口。

如果总线风暴持续超过 64 包后,接收端硬件将会进行流量控制,此时硬件不保证在突发风暴持续时间内能接收到所有数据包。待 突发风暴结束后,可恢复正常接收。